Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38290089

RESUMO

Rare diseases are underrepresented in biomedical research, leading to insufficient awareness. Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome is a rare disease caused by genetic alterations that result in heterozygous loss of function of SON. While patients with ZTTK syndrome live with numerous symptoms, the lack of model organisms hampers our understanding of SON and this complex syndrome. Here, we developed Son haploinsufficiency (Son+/-) mice as a model of ZTTK syndrome and identified the indispensable roles of Son in organ development and hematopoiesis. Son+/- mice recapitulated clinical symptoms of ZTTK syndrome, including growth retardation, cognitive impairment, skeletal abnormalities, and kidney agenesis. Furthermore, we identified hematopoietic abnormalities in Son+/- mice, including leukopenia and immunoglobulin deficiency, similar to those observed in human patients. Surface marker analyses and single-cell transcriptome profiling of hematopoietic stem and progenitor cells revealed that Son haploinsufficiency shifted cell fate more toward the myeloid lineage but compromised lymphoid lineage development by reducing genes required for lymphoid and B cell lineage specification. Additionally, Son haploinsufficiency caused inappropriate activation of erythroid genes and impaired erythropoiesis. These findings highlight the importance of the full gene expression of Son in multiple organs. Our model serves as an invaluable research tool for this rare disease and related disorders associated with SON dysfunction.


Assuntos
Hematopoese , Doenças Raras , Animais , Humanos , Camundongos , Perfilação da Expressão Gênica , Hematopoese/genética , Mutação
2.
Cells ; 12(23)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067123

RESUMO

Osteoblastic bone metastases are commonly detected in patients with advanced prostate cancer (PCa) and are associated with an increased mortality rate. Dickkopf-1 (DKK-1) antagonizes canonical WNT/ß-catenin signaling and plays a complex role in bone metastases. We explored the function of cancer cell-specific DKK-1 in PCa growth, metastasis, and cancer-bone interactions using the osteoblastic canine PCa cell line, Probasco. Probasco or Probasco + DKK-1 (cells transduced with human DKK-1) were injected into the tibia or left cardiac ventricle of athymic nude mice. Bone metastases were detected by bioluminescent imaging in vivo and evaluated by micro-computed tomography and histopathology. Cancer cell proliferation, migration, gene/protein expression, and their impact on primary murine osteoblasts and osteoclasts, were evaluated in vitro. DKK-1 increased cancer growth and stimulated cell migration independent of canonical WNT signaling. Enhanced cancer progression by DKK-1 was associated with increased cell proliferation, up-regulation of NF-kB/p65 signaling, inhibition of caspase-dependent apoptosis by down-regulation of non-canonical WNT/JNK signaling, and increased expression of epithelial-to-mesenchymal transition genes. In addition, DKK-1 attenuated the osteoblastic activity of Probasco cells, and bone metastases had decreased cancer-induced intramedullary woven bone formation. Decreased bone formation might be due to the inhibition of osteoblast differentiation and stimulation of osteoclast activity through a decrease in the OPG/RANKL ratio in the bone microenvironment. The present study indicated that the cancer-promoting role of DKK-1 in PCa bone metastases was associated with increased growth of bone metastases, reduced bone induction, and altered signaling through the canonical WNT-independent pathway. DKK-1 could be a promising therapeutic target for PCa.


Assuntos
Neoplasias Ósseas , Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias da Próstata , Animais , Cães , Humanos , Masculino , Camundongos , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Nus , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Microambiente Tumoral , Via de Sinalização Wnt , Microtomografia por Raio-X
3.
bioRxiv ; 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38014320

RESUMO

Rare diseases are underrepresented in biomedical research, leading to insufficient awareness. Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome is a rare disease caused by genetic alterations that result in heterozygous loss-of-function of SON. While ZTTK syndrome patients suffer from numerous symptoms, the lack of model organisms hamper our understanding of both SON and this complex syndrome. Here, we developed Son haploinsufficiency (Son+/-) mice as a model of ZTTK syndrome and identified the indispensable roles of Son in organ development and hematopoiesis. Son+/- mice recapitulated clinical symptoms of ZTTK syndrome, including growth retardation, cognitive impairment, skeletal abnormalities, and kidney agenesis. Furthermore, we identified hematopoietic abnormalities in Son+/- mice, similar to those observed in human patients. Surface marker analyses and single-cell transcriptome profiling of hematopoietic stem and progenitor cells revealed that Son haploinsufficiency inclines cell fate toward the myeloid lineage but compromises lymphoid lineage development by reducing key genes required for lymphoid and B cell lineage specification. Additionally, Son haploinsufficiency causes inappropriate activation of erythroid genes and impaired erythroid maturation. These findings highlight the importance of the full gene dosage of Son in organ development and hematopoiesis. Our model serves as an invaluable research tool for this rare disease and related disorders associated with SON dysfunction.

4.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35803738

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is associated with an incredibly dense stroma, which contributes to its recalcitrance to therapy. Cancer-associated fibroblasts (CAFs) are one of the most abundant cell types within the PDAC stroma and have context-dependent regulation of tumor progression in the tumor microenvironment (TME). Therefore, understanding tumor-promoting pathways in CAFs is essential for developing better stromal targeting therapies. Here, we show that disruption of the STAT3 signaling axis via genetic ablation of Stat3 in stromal fibroblasts in a Kras G12D PDAC mouse model not only slows tumor progression and increases survival, but re-shapes the characteristic immune-suppressive TME by decreasing M2 macrophages (F480+CD206+) and increasing CD8+ T cells. Mechanistically, we show that loss of the tumor suppressor PTEN in pancreatic CAFs leads to an increase in STAT3 phosphorylation. In addition, increased STAT3 phosphorylation in pancreatic CAFs promotes secretion of CXCL1. Inhibition of CXCL1 signaling inhibits M2 polarization in vitro. The results provide a potential mechanism by which CAFs promote an immune-suppressive TME and promote tumor progression in a spontaneous model of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Camundongos , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
5.
Mol Cancer Res ; 20(8): 1233-1246, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533313

RESUMO

Coevolution of tumor cells and adjacent stromal elements is a key feature during tumor progression; however, the precise regulatory mechanisms during this process remain unknown. Here, we show stromal p53 loss enhances oncogenic KrasG12D, but not ErbB2, driven tumorigenesis in murine mammary epithelia. Stroma-specific p53 deletion increases both epithelial and fibroblast proliferation in mammary glands bearing the KrasG12D oncogene in epithelia, while concurrently increasing DNA damage and/or DNA replication stress and decreasing apoptosis in the tumor cells proper. Normal epithelia was not affected by stromal p53 deletion. Tumors with p53-null stroma had a significant decrease in total, cytotoxic, and regulatory T cells; however, there was a significant increase in myeloid-derived suppressor cells, total macrophages, and M2-polarized tumor-associated macrophages, with no impact on angiogenesis or connective tissue deposition. Stroma-specific p53 deletion reprogrammed gene expression in both fibroblasts and adjacent epithelium, with p53 targets and chemokine receptors/chemokine signaling pathways in fibroblasts and DNA replication, DNA damage repair, and apoptosis in epithelia being the most significantly impacted biological processes. A gene cluster in p53-deficient mouse fibroblasts was negatively associated with patient survival when compared with two independent datasets. In summary, stroma-specific p53 loss promotes mammary tumorigenesis in an oncogene-specific manner, influences the tumor immune landscape, and ultimately impacts patient survival. IMPLICATIONS: Expression of the p53 tumor suppressor in breast cancer tumor stroma regulates tumorigenesis in an oncogene-specific manner, influences the tumor immune landscape, and ultimately impacts patient survival.


Assuntos
Neoplasias da Mama , Oncogenes , Proteína Supressora de Tumor p53 , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Carcinogênese , Tecido Conjuntivo/metabolismo , Camundongos , Proteínas Proto-Oncogênicas p21(ras) , Células Estromais/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Cancers (Basel) ; 13(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34680215

RESUMO

Adult T-cell leukemia/lymphoma (ATL) is an intractable disease affecting nearly 4% of Human T-cell Leukemia Virus Type 1 (HTLV-1) carriers. Acute ATL has a unique interaction with bone characterized by aggressive bone invasion, osteolytic metastasis, and hypercalcemia. We hypothesized that dual tumor and bone-targeted therapies would decrease tumor burden in bone, the incidence of metastasis, and ATL-associated osteolysis. Our goal was to evaluate dual targeting of both ATL bone tumors and the bone microenvironment using an anti-tumor HDACi (AR-42) and an osteoclast inhibitor (zoledronic acid, Zol), alone and in combination. Our results showed that AR-42, Zol, and AR-42/Zol significantly decreased the viability of multiple ATL cancer cell lines in vitro. Zol and AR-42/Zol decreased tumor growth in vivo. Zol ± AR-42 significantly decreased ATL-associated bone resorption and promoted new bone formation. AR-42-treated ATL cells had increased mRNA levels of PTHrP, ENPP2 (autotaxin) and MIP-1α, and TAX viral gene expression. AR-42 alone had no significant effect on tumor growth or osteolysis in mice. These findings indicate that Zol adjuvant therapy has the potential to reduce growth of ATL in bone and its associated osteolysis.

7.
Cancer Res ; 81(3): 606-618, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32327406

RESUMO

Platelet-derived growth factor receptor-beta (PDGFRß) is a receptor tyrosine kinase found in cells of mesenchymal origin such as fibroblasts and pericytes. Activation of this receptor is dependent on paracrine ligand induction, and its preferred ligand PDGFB is released by neighboring epithelial and endothelial cells. While expression of both PDGFRß and PDGFB has been noted in patient breast tumors for decades, how PDGFB-to-PDGFRß tumor-stroma signaling mediates breast cancer initiation, progression, and metastasis remains unclear. Here we demonstrate this paracrine signaling pathway that mediates both primary tumor growth and metastasis, specifically, metastasis to the brain. Elevated levels of PDGFB accelerated orthotopic tumor growth and intracranial growth of mammary tumor cells, while mesenchymal-specific expression of an activating mutant PDGFRß (PDGFRßD849V) exerted proproliferative signals on adjacent mammary tumor cells. Stromal expression of PDGFRßD849V also promoted brain metastases of mammary tumor cells expressing high PDGFB when injected intravenously. In the brain, expression of PDGFRßD849V was observed within a subset of astrocytes, and aged mice expressing PDGFRßD849V exhibited reactive gliosis. Importantly, the PDGFR-specific inhibitor crenolanib significantly reduced intracranial growth of mammary tumor cells. In a tissue microarray comprised of 363 primary human breast tumors, high PDGFB protein expression was prognostic for brain metastases, but not metastases to other sites. Our results advocate the use of mice expressing PDGFRßD849V in their stromal cells as a preclinical model of breast cancer-associated brain metastases and support continued investigation into the clinical prognostic and therapeutic use of PDGFB-to-PDGFRß signaling in women with breast cancer. SIGNIFICANCE: These studies reveal a previously unknown role for PDGFB-to-PDGFRß paracrine signaling in the promotion of breast cancer brain metastases and support the prognostic and therapeutic clinical utility of this pathway for patients.See related article by Wyss and colleagues, p. 594.


Assuntos
Neoplasias da Mama , MicroRNAs , Animais , Encéfalo/metabolismo , Neoplasias da Mama/genética , Células Endoteliais/metabolismo , Humanos , Camundongos , Receptor beta de Fator de Crescimento Derivado de Plaquetas
8.
Am J Pathol ; 191(2): 335-352, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33181139

RESUMO

Human T-lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia, a disease commonly associated with hypercalcemia and osteolysis. There is no effective treatment for HTLV-1, and the osteolytic mechanisms are not fully understood. Mice expressing the HTLV-1 oncogene Tax, driven by the human granzyme B promoter (Tax+), develop osteolytic tumors. To investigate the progression of the bone-invasive malignancies, wild-type, Tax+, and Tax+/interferon-γ-/- mice were assessed using necropsy, histologic examination, IHC analysis, flow cytometry, and advanced imaging. Tax+ and Tax+/interferon-γ-/- malignancies of the ear, tail, and foot comprised poorly differentiated, round to spindle-shaped cells with prominent neutrophilic infiltrates. Tail tumors originated from muscle, nerve, and/or tendon sheaths, with frequent invasion into adjacent bone. F4/80+ and anti-mouse CD11b (Mac-1)+ histiocytic cells predominated within the tumors. Three Tax+/interferon-γ-/- cell lines were generated for in vivo allografts, in vitro gene expression and bone resorption assays. Two cell lines were of monocyte/macrophage origin, and tumors formed in vivo in all three. Differences in Pthrp, Il6, Il1a, Il1b, and Csf3 expression in vitro were correlated with differences in in vivo plasma calcium levels, tumor growth, metastasis, and neutrophilic inflammation. Tax+ mouse tumors were classified as bone-invasive histiocytic sarcomas. The cell lines are ideal for further examination of the role of HTLV-1 Tax in osteolytic tumor formation and the development of hypercalcemia and tumor-associated inflammation.


Assuntos
Linhagem Celular Tumoral , Modelos Animais de Doenças , Genes pX , Infecções por HTLV-I/complicações , Sarcoma Histiocítico , Animais , Carcinogênese/genética , Sarcoma Histiocítico/patologia , Sarcoma Histiocítico/virologia , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oncogenes , Osteólise/patologia , Osteólise/virologia
9.
J Vis Exp ; (163)2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32986024

RESUMO

Primary bone tumors or bone metastasis from solid tumors result in painful osteolytic, osteoblastic, or mixed osteolytic/osteoblastic lesions. These lesions compromise bone structure, increase the risk of pathologic fracture, and leave patients with limited treatment options. Primary bone tumors metastasize to distant organs, with some types capable of spreading to other skeletal sites. However, recent evidence suggests that with many solid tumors, cancer cells that have spread to bone may be the primary source of cells that ultimately metastasize to other organ systems. Most syngeneic or xenograft mouse models of primary bone tumors involve intra-osseous (orthotopic) injection of tumor cell suspensions. Some animal models of skeletal metastasis from solid tumors also depend on direct bone injection, while others attempt to recapitulate additional steps of the bone metastatic cascade by injecting cells intravascularly or into the organ of the primary tumor. However, none of these models develop bone metastasis reliably or with an incidence of 100%. In addition, direct intra-osseous injection of tumor cells has been shown to be associated with potential tumor embolization of the lung. These embolic tumor cells engraft but do not recapitulate the metastatic cascade. We reported a mouse model of osteosarcoma in which fresh or cryopreserved tumor fragments (consisting of tumor cells plus stroma) are implanted directly into the proximal tibia using a minimally invasive surgical technique. These animals developed reproducible engraftment, growth, and, over time, osteolysis and lung metastasis. This technique has the versatility to be used to model solid tumor bone metastasis and can readily employ grafts consisting of one or multiple cell types, genetically-modified cells, patient-derived xenografts, and/or labeled cells that can be tracked by optical or advanced imaging. Here, we demonstrate this technique, modeling primary bone tumors and bone metastasis using solid tumor graft implantation into bone.


Assuntos
Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Osso e Ossos/patologia , Transplante de Neoplasias , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Determinação de Ponto Final , Humanos , Camundongos Endogâmicos BALB C , Tela Subcutânea/patologia , Tela Subcutânea/cirurgia
10.
iScience ; 11: 238-245, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30634169

RESUMO

Bone-resorbing osteoclasts (OCs) are derived from myeloid precursors (MPs). Several transcription factors are implicated in OC differentiation and function; however, their hierarchical architecture and interplay are not well known. Analysis for enriched motifs in PU.1 and MITF chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) data from differentiating OCs identified eomesodermin (EOMES) as a potential novel binding partner of PU.1 and MITF at genes critical for OC differentiation and function. We were able to demonstrate using co-immunoprecipitation and sequential ChIP analysis that PU.1, MITF, and EOMES are in the same complex and present as a complex at OC genomic loci. Furthermore, EOMES knockdown in MPs led to osteopetrosis associated with decreased OC differentiation and function both in vitro and in vivo. Although EOMES is associated with embryonic development and other hematopoietic lineages, this is the first study demonstrating the requirement of EOMES in the myeloid compartment.

11.
Life Sci Alliance ; 1(5): e201800190, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30456390

RESUMO

The contribution of the tumor microenvironment to pancreatic ductal adenocarcinoma (PDAC) development is currently unclear. We therefore examined the consequences of disrupting paracrine Hedgehog (HH) signaling in PDAC stroma. Herein, we show that ablation of the key HH signaling gene Smoothened (Smo) in stromal fibroblasts led to increased proliferation of pancreatic tumor cells. Furthermore, Smo deletion resulted in proteasomal degradation of the tumor suppressor PTEN and activation of oncogenic protein kinase B (AKT) in fibroblasts. An unbiased proteomic screen identified RNF5 as a novel E3 ubiquitin ligase responsible for degradation of phosphatase and tensin homolog (PTEN) in Smo-null fibroblasts. Ring Finger Protein 5 (Rnf5) knockdown or pharmacological inhibition of glycogen synthase kinase 3ß (GSKß), the kinase that marks PTEN for ubiquitination, rescued PTEN levels and reversed the oncogenic phenotype, identifying a new node of PTEN regulation. In PDAC patients, low stromal PTEN correlated with reduced overall survival. Mechanistically, PTEN loss decreased hydraulic permeability of the extracellular matrix, which was reversed by hyaluronidase treatment. These results define non-cell autonomous tumor-promoting mechanisms activated by disruption of the HH/PTEN axis and identifies new targets for restoring stromal tumor-suppressive functions.

12.
Bone Res ; 6: 8, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619268

RESUMO

Genome-wide association studies (GWASs) have been instrumental in understanding complex phenotypic traits. However, they have rarely been used to understand lineage-specific pathways and functions that contribute to the trait. In this study, by integrating lineage-specific enhancers from mesenchymal and myeloid compartments with bone mineral density loci, we were able to segregate osteoblast- and osteoclast (OC)-specific functions. Specifically, in OCs, a PU.1-dependent transcription factor (TF) network was revealed. Deletion of PU.1 in OCs in mice resulted in severe osteopetrosis. Functional genomic analysis indicated PU.1 and MITF orchestrated a TF network essential for OC differentiation. Several of these TFs were regulated by cooperative binding of PU.1 with BRD4 to form superenhancers. Further, PU.1 is essential for conformational changes in the superenhancer region of Nfatc1. In summary, our study demonstrates that combining GWASs with genome-wide binding studies and model organisms could decipher lineage-specific pathways contributing to complex disease states.

13.
PLoS One ; 12(9): e0184984, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934293

RESUMO

The contribution of the tumor microenvironment to the development of pancreatic adenocarcinoma (PDAC) is unclear. The LSL-KrasG12D/+;LSL-p53R172H/+;Pdx-1-Cre (KPC) tumor model, which is widely utilized to faithfully recapitulate human pancreatic cancer, depends on Cre-mediated recombination in the epithelial lineage to drive tumorigenesis. Therefore, specific Cre-loxP recombination in stromal cells cannot be applied in this model, limiting the in vivo investigation of stromal genetics in tumor initiation and progression. To address this issue, we generated a new Pdx1FlpO knock-in mouse line, which represents the first mouse model to physiologically express FlpO recombinase in pancreatic epithelial cells. This mouse specifically recombines Frt loci in pancreatic epithelial cells, including acinar, ductal, and islet cells. When combined with the Frt-STOP-Frt KrasG12D and p53Frt mouse lines, simultaneous Pdx1FlpO activation of mutant Kras and deletion of p53 results in the spectrum of pathologic changes seen in PDAC, including PanIN lesions and ductal carcinoma. Combination of this KPF mouse model with any stroma-specific Cre can be used to conditionally modify target genes of interest. This will provide an excellent in vivo tool to study the roles of genes in different cell types and multiple cell compartments within the pancreatic tumor microenvironment.


Assuntos
Transformação Celular Neoplásica/patologia , DNA Nucleotidiltransferases/metabolismo , Modelos Animais de Doenças , Proteínas de Homeodomínio/fisiologia , Neoplasias Pancreáticas/patologia , Transativadores/fisiologia , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , DNA Nucleotidiltransferases/genética , Progressão da Doença , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética
15.
Vet Sci ; 3(3)2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-29056726

RESUMO

Feline oral squamous cell carcinoma (FOSCC) is a highly aggressive head and neck cancer in cats, but the molecular pathogenesis of this cancer is still uncertain. In this study, p16, p53, and pRb proteins were detected and quantified by immunohistochemistry in forty-three FOSCC primary tumors and three FOSCC xenografts. p16 mRNA levels were also measured in three FOSCC cell lines (SCCF1, F2, and F3), which were consistent with their p16 immunoreactivity. Feline SCCF1 cells had very high levels of p16 protein and mRNA (55-fold greater) compared to SCCF2 and F3. A partial feline p16 cDNA sequence was amplified and sequenced. The average age of cats with FOSCC with high p16 immunoreactivity was significantly lower than the average age in the low p16 group. Eighteen of 43 (42%) FOSCCs had low p16 intensity, while 6/43 (14%) had high p16 immunoreactivity. Feline papillomavirus L1 (major capsid) DNA was not detected in the SCC cell lines or the FOSCCs with high p16 immunostaining. Five of 6 (83%) of the high p16 FOSCC had low p53, but only 1/6 (17%) had low pRb immunoreactivity. In summary, the staining pattern of p16, p53, and pRb in FOSCC was different from human head and neck squamous cell carcinoma and feline cutaneous squamous cell carcinoma. The majority of FOSCCs have low p16 immunostaining intensity, therefore, inactivation of CDKN2A is suspected to play a role in the pathogenesis of FOSCC. A subset of FOSCCs had increased p16 protein, which supports an alternate pathogenesis of cancer in these cats.

16.
J Cell Physiol ; 231(3): 630-40, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26218069

RESUMO

The Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper family factor that is essential for terminal osteoclast differentiation. Previous work demonstrates that phosphorylation of MITF by p38 MAPK downstream of Receptor Activator of NFkB Ligand (RANKL) signaling is necessary for MITF activation in osteoclasts. The spontaneous Mitf cloudy eyed (ce) allele results in production of a truncated MITF protein that lacks the leucine zipper and C-terminal end. Here we show that the Mitf(ce) allele leads to a dense bone phenotype in neonatal mice due to defective osteoclast differentiation. In response to RANKL stimulation, in vitro osteoclast differentiation was impaired in myeloid precursors derived from neonatal or adult Mitf(ce/ce) mice. The loss of the leucine zipper domain in Mitf(ce/ce) mice does not interfere with the recruitment of MITF/PU.1 complexes to target promoters. Further, we have mapped the p38 MAPK docking site within the region deleted in Mitf(ce). This interaction is necessary for the phosphorylation of MITF by p38 MAPK. Site-directed mutations in the docking site interfered with the interaction between MITF and its co-factors FUS and BRG1. MITF-ce fails to recruit FUS and BRG1 to target genes, resulting in decreased expression of target genes and impaired osteoclast function. These results highlight the crucial role of signaling dependent MITF/p38 MAPK interactions in osteoclast differentiation.


Assuntos
Diferenciação Celular/genética , Sistema de Sinalização das MAP Quinases , Fator de Transcrição Associado à Microftalmia/metabolismo , Microftalmia/genética , Osteoclastos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Mutação/genética , Osteoclastos/citologia , Fosforilação , Ligante RANK/metabolismo
17.
J Tissue Eng ; 6: 2041731415609298, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-35003616

RESUMO

The N-terminus of parathyroid hormone-related protein regulates bone marrow stromal cell differentiation. We hypothesized that the nuclear localization sequence and C-terminus are involved. MicroRNA and gene expression analyses were performed on bone marrow stromal cells from mice lacking the nuclear localization sequence and C-terminus (PthrpΔ/Δ ) and age-matched controls. Differentiation assays with microRNA, cytochemical/histologic/morphologic, protein, and gene expression analyses were performed. PthrpΔ/Δ bone marrow stromal cells are anti-osteochondrogenic, pro-adipogenic, and pro-myogenic, expressing more Klf4, Gsk-3ß, Lif, Ct-1, and microRNA-434 but less ß-catenin, Igf-1, Taz, Osm, and microRNA-22 (p ⩽ 0.024). PthrpΔ/Δ osteoblasts had less mineralization, osteocalcin, Runx2, Osx, Igf-1, and leptin (p ⩽ 0.029). PthrpΔ/Δ produced more adipocytes, Pparγ, and aP2, but less Lpl (p ⩽ 0.042). PthrpΔ/Δ cartilage pellets were smaller with less Sox9 and Pth1r, but greater Col2a1 (p ⩽ 0.024). PthrpΔ/Δ produced more myocytes, Des, and Myog (p ⩽ 0.021). MicroRNA changes supported these findings. In conclusion, the nuclear localization sequence and C-terminus are pro-osteochondrogenic, anti-adipogenic, and anti-myogenic.

18.
Prostate ; 74(13): 1251-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25043424

RESUMO

BACKGROUND: In 2012, over 240,000 men were diagnosed with prostate cancer and over 28,000 died from the disease. Animal models of prostate cancer are vital to understanding its pathogenesis and developing therapeutics. Canine models in particular are useful due to their similarities to late-stage, castration-resistant human disease with osteoblastic bone metastases. This study established and characterized a novel canine prostate cancer cell line that will contribute to the understanding of prostate cancer pathogenesis. METHODS: A novel cell line (Probasco) was derived from a mixed breed dog that had spontaneous prostate cancer. Cell proliferation and motility were analyzed in vitro. Tumor growth in vivo was studied by subcutaneous, intratibial, and intracardiac injection of Probasco cells into nude mice. Tumors were evaluated by bioluminescent imaging, Faxitron radiography, µCT, and histology. RT-PCR and genome-wide DNA copy number profiling were used to characterize the cell line. RESULTS: The Probasco cells grew in vitro (over 75 passages) and were tumorigenic in nude mice. Probasco cells expressed high levels of BMP2, CDH1, MYOF, FOLH1, RUNX2, and SMAD5 modest CXCL12, SLUG, and BMP, and no PTHrP mRNA. Following intracardiac injection, Probasco cells metastasized primarily to the appendicular skeleton, and both intratibial and intracardiac injections produced osteoblastic tumors in bone. Comparative genomic hybridization demonstrated numerous DNA copy number aberrations throughout the genome, including large losses and gains in multiple chromosomes. CONCLUSIONS: The Probasco prostate cancer cell line will be a valuable model to investigate the mechanisms of prostate cancer pathogenesis and osteoblastic bone metastases.


Assuntos
Neoplasias Ósseas/secundário , Carcinoma/secundário , Transplante de Neoplasias , Osteoblastos/patologia , Neoplasias da Próstata/patologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cães , Masculino , Camundongos , Camundongos Nus , Osteoblastos/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo
19.
J Cell Biochem ; 115(6): 1043-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24420069

RESUMO

Recently, microRNAs (miRs) have been implicated in bone formation and homeostasis. We previously reported that Dicer generated miRs have pivotal roles in differentiation and activity of osteoclasts. However, recent studies have demonstrated that Dicer is implicated in production of endogenous small interfering RNAs, non-canonical miRs, and other small RNAs in mammals. Hence, a challenging question is the extent to which expression of canonical miRs is obligatory for osteoclastic control of bone metabolism. DiGeorge syndrome critical region gene 8 (DGCR8) is exclusively related to expression of miRs by a canonical processing pathway together with the nuclear RNase III enzyme Drosha. Osteoclast-specific deletion of DGCR8 led to impaired osteoclastic development and bone resorption so that bone development was significantly retarded. In culture, the expression levels of osteoclastic phenotype-related genes and proteins were remarkably inhibited during osteoclastogenesis in DGCR8-deficiency. Thus, we have identified that DGCR8-dependent miRs are indispensable for osteoclastic control of bone metabolism.


Assuntos
Reabsorção Óssea/genética , Expressão Gênica , MicroRNAs/genética , Osteoclastos/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Reabsorção Óssea/metabolismo , Células Cultivadas , Immunoblotting , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Knockout , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Ligante RANK/farmacologia , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Leuk Lymphoma ; 53(4): 688-98, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21942940

RESUMO

Parathyroid hormone-related protein (PTHrP) and macrophage inflammatory protein-1α (MIP-1α) have been implicated in the pathogenesis of adult T-cell leukemia/lymphoma, but their effects on T-cells have not been well studied. Here we analyzed the functions of PTHrP and MIP-1α on T-cell growth and death both in vitro and in vivo by overexpressing either factor in human Jurkat T-cells. PTHrP or MIP-1α did not affect Jurkat cell growth in vitro, but PTHrP increased their sensitivity to apoptosis. Importantly, PTHrP and MIP-1α decreased both tumor incidence and growth in vivo. To investigate possible mechanisms, polymerase chain reaction (PCR) arrays and real-time reverse transcription (RT)-PCR assays were performed. Both PTHrP and MIP-1α increased the expression of several factors including signal transducer and activator of transcription 4, tumor necrosis factor α, receptor activator of nuclear factor κB ligand and death-associated protein kinase 1, and decreased the expression of inhibitor of DNA binding 1, interferon γ and CD40 ligand in Jurkat cells. In addition, MIP-1α also increased the expression of transcription factor AP-2α and PTHrP increased expression of the vitamin D3 receptor. These data demonstrate that PTHrP and MIP-1α exert a profound antitumor effect presumably by increasing the sensitivity to apoptotic signals through modulation of transcription and apoptosis factors in T-cells.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Quimiocina CCL3/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Experimental/genética , Proteína Relacionada ao Hormônio Paratireóideo/genética , Animais , Apoptose/genética , Ligante de CD40/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Linhagem Celular Tumoral , Proteínas Quinases Associadas com Morte Celular , Humanos , Interferon gama/genética , Células Jurkat , Leucemia Experimental/patologia , Leucemia de Células T/genética , Leucemia de Células T/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Análise de Sequência com Séries de Oligonucleotídeos , Ligante RANK/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT4/genética , Linfócitos T/metabolismo , Linfócitos T/patologia , Transplante Heterólogo , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...